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Abstract. Using the method due to Fujikawa wherein anomalies are identified With the 
Jacobian factors arising from the path integral measure under symmetry transformations, 
the anomaly under vanslations of inverse time, i.e. I/t+l/f-a is worked out for the 
Landau problem. 

The symmetries associated with the planar motion of charged particles under the inllu- 
ence of various electromagnetic potentials has been the subject of several recent papers 
[I-51. Among the various generators of these symmetrieS it was found [l-51 that the 
generators of three time-reparametrization transformations, namely time translation 
( t -+t+to) ,  time dilatation (t+emP t )  and translation ofinverse time ( l / t - + l / t - ~ ) ,  close 
on commutation to the conformal SO(2,l) Lie algebra. The Landau problem also 
concems the planar motion of a charged point particle, but in the presence of a nnifonn 
magnetic field B= curl A ,  2A = B x r. However, it turns out that the Landau Lagrangian, 
quite unlike the other cases of planar motion discussed in [l-51 is non-invariant [6] 
under t and l/t+l/t-u. 

The recent observation by Jackiw [7] that the aforesaid SO(2,l) symmetry does 
not survive quantization in the case of planar motion in a two-dimensional S”(r) 
potential motivated us to ask if the Landau problem was a c t e d  with a dilatation 
anomaly. An a a t i v e  answer was obtained recently [6] from an analysis of the naive 
Ward identity associated with broken dilatation symmetry. This paper extends this 
recent calculation [6] to derive the conformal anomaly, i.e. the anomaly associated with 
the transformation l/ t-+l/ t-u.  The method we adopt is that due to Fujikawa [S, 91 
wherein the anomalies are identified with the Jacobian factors arising from the path 
integral measure under the symmetry transformations. Apart from the apparent simplic- 
ity of the Fujikawa approach [IO] in contrast to the somewhat laborious verification 
of the naive Ward identity adopted earlier [6], its use in the present paper anticipates 
similar calculations in non-relativistic field theories that will be reported elsewhere. 

We begin with the generating functional Z [ J ]  of connected Green functions for the 
Landau Lagrangian, namely [6] 
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and 

~ = $ d + E i .  A ,  
C 

, 

Note that C?O and @,o* denote the ground state wavefunctions in (1) and tb- to= (n+ 1)s. 
Under the conformal transformation t + f =  i/(l- ta(t)), we have following Jackiw [l] 

sxj= a(t)(txj- ?i,) 

6&= ri(t)(tx, - ?&) + a(t)(xr - tk, - ?&) (3) 

and 

(4) 
2et . d SL=d(t)Q f a  - x .  A + - (-aPL + ; a d )  
C dt 

I with Q = -t2H+ t(n * X) - s a 2  H=fmP and nj=mi ,+(e /c )Aj .  Note the 
parameter a(t) is now a function of t ,  so as to derive the Ward identities following the 
Fujikawa,method [8,9] easily. We now expand 

with &(t) being a complete set of eigenfunctions of the Hermitian operator 

i, j =  1,2. 

As a matrix we can write 

with D4k=Akbk, I being the unit 2 x 2  matrix and U, the usual Pauli matrix. The 
completeness %rid orthonormality properties of the eigenfunctions &*(t) are now defined 
by the relations 

02 

2 4lc ,o( f l )4Eb( t3  = 6,6(t,- t2) a, b= 1,2 
, .  k-1 

~" 

respectively. Note also that, with the action S=j  L dt, 
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Using (3) it is easy to see that when xj -x; ( t )=x ,+6xi  
r 

The change in the path integral measure caa now be easily obtained using (6). With 
the notation bk=alk and ck=azk~we obtain for the measure 

” 
= (det ckj)-* n db; de: 

i= 1 

with Ckj= 6r i+l  dt U(t )&( t -  ?ar)& 
On using (7) in (2)  we obtain 

(7) 

For infinitesmal a(t) the last exponential becomes, 

thus implying that the anomaly is given by (ignoring a(t)) 

A ( t ) = - 2 x  +L(t-fza,)$k(t) (9) 
k 

Following Fujikawa [8,9] we shall now use an exponential cut-off to regulate the s u m  
in (9) and write 

= -2 lim l i T r { ( t -  ?a,) 6(t-  t’)} 
M+m I+? 

where we have now used the completeness of the eigenfmctions { &(t)} and the integral 
representation of the &function in arriving~at (10). Using (5) it is easy to see that 

Thus (10) becomes 
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with M2a=mzz4+(eB/c)Z~ and Mzb=2(eB/c)d. This can again be converted to 

after using the familiar identity eb"y=Icosh b+crysinhb, and completing the trace 
operation. Since the second term yields zero, we obtain 

M-m 

Substituting for a and b it is easy to check that (12) can be written, after elementary 
algebraic manipulations, as 

Two points now need to be made. Firstly, the exchange of the limiting operation with 
the integration can be made in the second integral to obtain a finite result namely 2w. 
The first integral can, on the other hand, be evaluated exactly to obtain [ll], with 
y&= b 

lim ( ~ p ) - ' / ~ r ( f )  ey' ~ - ~ / ~ ( - y )  = lim ( zP)- ' /~  ey2 (iyz)1/4~1/4(iy2) (15) 
M - m  M-CC 

where D-&) and KIl4(x) are the parabolic cylinder functions and modified Bessel 
functions respectively. Since KIl4(x) k ( 1 / 4 ) ( ~ / 2 ) + ~  as x+O, we obtain using (15) 
the result 

z~(t)=+4tw-tr(1/4) lim (M/m)lD. (16) 

Note that the second term is independent of the charge e; it is therefore the conformal 
anomaly associated with the free particle Lagrangian L=&&. 

M-m 

With 

z ~ ~ t )  =-tr(1/4) lim (M/m)'l2 
M-m 

we obtain the correct conformal anomaly for the Landau Lagrangian given by the 
difference [IO] 

z(A-Af)=4tw =4t(eE/Zmc). (17) 

The derivation presented above for the conformal anomaly could of course be camed 
through for the dilatation transformation t-te-pt; on using &c,=a(t)(ta,- &(t) we 
would obtain an equation analogous to (11) but with (izt-f) in place of (t- izt ') .  
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Following the same steps from (11)-(15) one would now obtain in place of (16) the 
result 

On identifying the first term with the dilatation anomaly for the free particle, one now 
obtains the correct dilatation anomaly for the Landau Lagrangian, namely 

n(Ad-A4f)= -20 .  (19) 
Thus the conformal anomaly is -2t times the dilatation anomaly; we recall here that 
the same relation [6] obtained between the time derivatives dQ/dt and dl)/dt of the 
conformal (Q) and dilatation (D) charges classically. We may also point out that the 
dilatation anomaly given in (19) is (2/a) times the anomaly calculated via the anomal- 
ous Ward identity earlier [6]. Indeed, the calculation presented here can also be pursued 
from the point of view of the naive Ward identity associated with broken conformal 
symmetty. The conformal anomaly then turns out to be 2to-which is (-2t) times the 
dilatation anomaly. 

We shall now conclude this paper with a few pertinent remarks. Firstly, it is clear 
from (IO) et seq. that if we had chosen a plane wave basis ab inifio instead of the 
{&(t)} and used the regulator 

then a non-zero conformal anomaly would not have been obtained. Thus the 4 k ( t )  
basis which diagonalizes the Hermitian operator D should be used to derive exact 
 relations such as Ward identities (cf Fujikawa [SI). Secondly, as also observed by 
Fujikawa [9], in connection with the trace anomaly, the conformal anomaly (as also 
the dilatation anomaly) in the present paper arises fcom the non-commutativity of two 
basic operators, namely D and the generator W of global ,conformal transformation 
U(a) =eiaw; indeed with 

U( a)t  U-’(a) = (1 - a t)-’t 
and 

d -  d 
dt dt 

U(a) - U ’(a) =(1 -at)*- 

it is clear that the commutator 

el3 d i[W, D ]  =2 m l  2 t - - 3 f  - - 2  iuy- t -_ ( ,“; :J c dt 

A similar non-zero result is obtained for global dilatation transformations thus account- 
ing for the dilatation anomaly. 

An extension of the work reported herein to (2+ 1)-dimensional non-relativistic 
field theories is presently in progress. The details will be reported elsewhere. 
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